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AGP30: Cd tolerance related gene associate with mitochondrial pyruvate carrier 1
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ABSTRACT
Heavy metal ions which are not essential elements for basic metabolism severely threaten human health
through food chain. As the most water-soluble and absorbed heavy metal ion, Cadmium (Cd) is easily
accumulated and contaminates plants. Previously, mitochondrial pyruvate carrier 1 (MPC1) was proved
to be required for Cd tolerance and Cd2+ exclusion. In this study, we carried out following mRNA
expression profile analysis on Cd-treated mpc1-1 and wild-type plants. After further selection of differ-
ential expressed genes and Cd tolerance tests in yeast, we have discovered a novel Cd tolerance related
gene: AGP30, which specifically expresses in root and is significantly regulated by MPC under Cd stress.
This protein mainly localize in the cell wall of cells in root meristem region, which was consistent with
our former Cd2+ flux measurement. In conclusion, our work discovered a new Cd resistant gene for
utilizing in transgenic crops for preventing Cd2+ influx.
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Mitochondrial pyruvate carriers (MPCs), which transport
pyruvate into mitochondria for generating Acetyl-CoA, and
finally drive TCA activity, are the key elements in the cellular
basic metabolism.1,2 Recently, we found that MPC1 prevent
Cd stress and Cd2+ influx by sustaining TCA cycle and ATP
level in Arabidopsis.3 In plant, MPC members were identi-
fied to be involved in kinds of stress regulation.4–6 Moreover,
MPC1 had proved to be interacted with its homologous
proteins: MPC2 (MPC2L), NRGA1 and MPC3, and form
kinds of MPC complexes.3,6 However, the details of MPC
in the regulation of downstream genes in plants are unclear.
Although MPC is a kind of transporter, which should have
no direct responsive or associated proteins or genes, some
putative indirect candidates are still interesting to be further
analyzed for Cd tolerance. To examine whether the gene
expression pattern has changed, an RNA-seq analysis was
conducted on Cd-treated plants comparing mpc1-1 against
the wild-type control (Figure 1(a)). Differential expressed
genes (DEGs) with statistically significant change in the
comparison, which DEG comparison log2 ratio >2 or <-2
were collected for clustering analysis, and there are 33 up-
regulated and 8 down-regulated including MPC1 itself
(Figure 1(b,c)). Loss of AtMPC1 may lead to the decreased
expression of the putative indirect regulatory downstream
genes under Cd stress. In order to find out the putative
candidate in Cd tolerance, we focus on the seven significant
down-regulated DEGs (Table 1), and selected the most sig-
nificant three down-regulated DEGs (AGP30, CLE5 and
JAL9) for further analysis. As an easy and fast tolerance
test system, yeast (Saccharomyces cerevisiae) can be used to

test some special tolerance function of the genes. Previously,
saccharomyces cerevisiae JRY472 showed Cd sensitive phe-
notype when lack MPC1.3 So, we cloned the genes into the
yeast expressing recombination vector pRS416, which is
under control of the pGDP, and then transformed them in
JRY472 and mpc1Δ. Serial dilution assays were conducted to
test Cd tolerance in yeast. As shown in Figure 2, AGP30
could recover the Cd sensitivity of mpc1Δ. This result indi-
cated that AGP30 could be a novel Cd tolerance related gene.

AGP30 (Arabinogalactan protein 30), which specifically
expresses in the cell walls of the primary root, plays a role
in root regeneration and seed germination.7 However, there is
no evidence showing that AGP30 related to the tolerance of
heavy metal stress. For plants, root is the main channel of
heavy metal ion influx,8–10 and root cell wall should be the
first line of defense to resist heavy metal ion invasion.11–13

Thus, there should existing Cd resistant proteins localized in
root cell walls. Interestingly, the transcripts of AGP30 signifi-
cantly accumulate in the cell walls of root meristem
region.14,15 Previously, we had measured the Cd ion flux in
Arabidopsis root in meristematic zone.3 The detective point of
mpc1-1 showed enhanced Cd influx compared to wild-type
plant. Thus, we speculate that the deletion of AGP30 should
also be one reason of Cd invasion except the decrease of ATP
level. Additionally, to confirm the relationship between
AGP30, MPC1 and Cd stress, we conducted RT-qPCR in
mpc1-1 and wild-type plants without or with Cd stress. As
shown in Figure 3, without stress, the AGP30 transcript
abundance did not delete in mpc1-1 compared to wild-type
plants, however, when treated with 50 μM CdCl2, the
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abundance level decreased about 62 fold. Moreover, in wild-
type plants, when treated with Cd, the transcript abundance of
AGP30 also decreased to the half level of the normal condi-
tion. It is suggested that the AGP30 response to Cd, and is
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Figure 1. RNA-seq analysis. (a) Arabidopsis plants grown on 0.5Χ MS plates vertically for 3 d were transfered to plates with 50 μM CdCl2 for culturing another 7
d. whole plantlets were instantly freezed in liguid nitrogen, and than stored in −80°C. (b) Numbers of DEGs in oxs2-1 VS Wt group. (c) DEGs which comparison log2
ratio >2 or <-2 were collected for clustering analysis. Expression ratios shown as log2 values. Magenta represents increased expression; green represents decreased
expression compared to Col. Vertical axis shows fold enrichment of relative transcript levels between mpc1-1 and wild-type plants.

Table 1. Summary of significant down-regulated differentially expressed genes in mpc1-1 VS WT comparison group discovered by RNA-seq (Figure 1(c)).

Gene_id
Readcount
_mpc1

Readcount
_Col log2FoldChange mpc1-1 vs Col Col vs mpc1-1 padj Associated Gene Name

AT5G20090 8.418565681 723.1528101 −6.4246 0.011641475 85.89976458 1.34E-81 MPC1
AT2G33790 5.935108725 204.1548384 −5.1042 0.029071605 34.3978262 1.30E-11 AGP30
AT2G31083 1.282069928 31.16551444 −4.6034 0.041137454 24.30874772 0.00036245 CLE5
AT1G52060 11.62816875 128.724492 −3.4686 0.090333771 11.0700571 8.82E-13 JAL9
AT2G39040 9.676693472 48.65136367 −2.3299 0.19889871 5.027684695 0.0050019 PER24
AT5G50950 83.7015594 392.6306867 −2.2298 0.2131814 4.690840762 0.00078333 FUM2
AT2G47880 14.51504021 63.16384212 −2.1216 0.22979983 4.351613306 0.029287 GRXC13
AT1G65310 26.22389186 107.3363649 −2.0332 0.244315073 4.093075333 0.01831 XTH17
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Figure 2. Cd tolerance test in yeast. Yeast dilution bioassay with wild-type
strain, mpc1Δ transformed with pRS416 and pRS416 expressing AGP30 in SC
medium. Triangles represent serial 10-fold dilutions (starting concentration of
0.3 OD600). Representative test from three reproducible experiments is shown.
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Figure 3. Expression of AGP30 (relative to ACT2 control) in 10-d-old Arabidopsis
seedlings exposed to 0 or 50 mM CdCl2. Error bars indicate ± SD from three
independent experiments. P value of Student’s t test: mpc1-1 compared with the
wild type. ***P < .001.
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dramatically regulated by MPC1 with Cd stress. Considering
the expression of AGP30 decreased in plants with Cd, and
AGP30 can restore the Cd sensitive phenotype in mpc1Δ,
AGP30 may someday be engineered for heavy metal stress
tolerance in crops.
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